
16

Binary-image-
manipulation
algorithms
in the Image
View Faciity

by K. L. Anderson
F. C. Mintzer
G. Goertzel
J. L. Mitchell
K. S. Pennington
W. 6. Pennebaker

Most current implementations of electronic mail
deal primarily with coded information. A
scanned-document-handling system that could
scan a document, distribute it, display it on
terminals, and print it on host-attached printers
would offer a similar convenience for documents
in hard-copy rather than coded form. For such a
system to be practical, fast software is needed
for a number of image-manipulation functions.
The required functions are compression,
to reduce the size of the data files;
decompression, to reconstruct the scanned
document; scaling, to match the resolution of the
scan to the resolution of the display or printer;
and rotation, to reorient documents scanned
sideways or upside down. This paper describes
a collection of algorithms underlying fast
software for manipulating binary images
that is used in the Image View Facility, a
System/370-based software package that
permits the display and printing of binary
images at various resolutions.

OCopyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

Introduction
Commercial replacement of paper documents with
electronically stored information has focused primarily on
coded data. The class of documents which can conveniently
be represented in coded form is limited; such items as letters
(containing letterheads and signatures), drawings, and
information captured via scanners are more readily and
accurately handled in noncoded (e.g., bitmap) form. The use
of such data introduces problems of data volume, display,
and printing which generally do not arise with coded
information.

The Image View Facility (IVF) program offering [I] is a
partial solution to the above problems. IVF is a System/370-
based software package which allows bitmap images to be
displayed or printed, permitting convenient access to
electronically stored noncoded information. Its purpose is to
facilitate the use of noncoded information in office and
commercial environments. It deals particularly with the
processing of medium-resolution binary (black/white) images
on commercially available IBM hardware. IVF was
developed jointly by IBM teams in the United Kingdom and
at the T. J. Watson Research Center in Yorktown Heights,
New York; Peter Somerville coordinated the project. The
first release was announced in early 1984, and a second
release followed a year later.

IVF combines a convenient and understandable user
interface for specification of basic image-manipulation tasks
with a set of fast processing kernels to perform those tasks.

IBM J. RES. DEVELOP, VOL. 31 NO. I JANUARY 1987 K . L. ANDERSON ET AL

The user-interface considerations encountered by the UK
developers are discussed in Reference [2]. This paper
provides a brief description of some of the underlying image-
manipulation algorithms developed at Yorktown.

Speed of operation is a key feature of IVF. It is
undesirable for a user to have to wait more than a few
seconds for an image to be displayed, and it is advantageous
to be able to have several users running IVF simultaneously
without overloading the host system. The attention paid to
creating fast code mandated the development of
computationally simple algorithms; hence, many of the IVF
algorithms can be easily recoded to execute in “reasonable”
amounts of time on smaller processors. This has allowed us
to carry them over to systems other than IVF with a
minimum of effort.

Table 1 lists some of the 1/0 devices supported by IVF. A
variety of image formats are supported. These include raster
bitmaps, images compressed using the Scanmaster I
(IBM 8815) [3] compression algorithm, and Composed
Document Printing Facility (CDPF) [4] and Print Services
Facility (PSF) [5] page segments and list files. Images may be
viewed on the various displays and reformatted (with
appropriate scaling) for printing on any of the supported
printers.

The algorithms described in this paper fall into three
categories: data compression, scale change, and rotation. In
order to use image data received from the Scanmaster, a
facsimile device (used as a scanner and printer) supported by
IVF, it is necessary to decompress the data stream which is
created by a compressor implemented in the Scanmaster
hardware. To print an image on the Scanmaster, the image
must be encoded to create the correct compressed data
stream. Since various printers have differing resolutions and
the capabilities of display screens vary, some scaling of
images is often required to take an image from one device,
and display or print it on another. Finally, since documents
are not always scanned right side up, some rotation
capability is desirable to display images at the correct
orientation. Although software for performing these
functions has existed for some years, there are few detailed
descriptions of the underlying algorithms in the literature.
Most of the image-manipulation algorithms described were
devised for hardware systems detailed in patent applications;
generally these methods are not appropriate for efficient
software implementation.

In [6], Takao describes in some detail an earlier image-
editing system developed at the IBM Tokyo Scientific Center
(now the Tokyo Research Laboratory). This system, called
IEDIT, stores images in a compressed form and manipulates
them in the same form, thus eliminating the need for
conversion of image data from one format to another (e.&
between compressed and raster form, as in IVF). However,
the representation used by IEDIT is not as compact as that
achieved by other known compression methods; it was

Table 1 Some IBM image inputloutput products supported by
IVF.

Input device Display dimensions Scan dimensions
~ ~~~

(Pels) (pelslin.)

Scanmaster
High-resolution
Low-resolution

Displays
3278
3279
3290
PC/G
PC/GX

Printers
Scanmaster
3800 Model 3
4250

1728 x 2200 200
1728 X 1100 200 x 100

720 X 5 12
720 X 384
960 X 75 1
720 x 512

1024 X 1024

200
240
600

designed to trade off compression for ease of manipulation.
The development of fast compression/decompression
software such as that used in IVF has made the conversion
processes less of a bottleneck. Furthermore, as compression
methods improve, the compression software in IVF can be
augmented or replaced by better compressors without
disturbing the operation of the rest of the system. Since
image data must generally be converted to raster form for
display or printing, little is lost by converting earlier in the
process rather than later. We believe that our approach of
storing the image data in maximally compressed form and
converting the data to the most convenient form for
manipulation allows us to take advantage of the best
compression techniques available, while permitting superior
speed of operation.

To illustrate the uses of some of the algorithms described
below, consider the problem of formatting a Scanmaster
image for presentation on an IBM 3279 display in the
various modes used by IVF, as illustrated in Figure 1. The
image must first be decompressed to create a raster image
which can be scaled. This image, represented by the large
rectangle, is 1728 pels (picture elements) horizontally by
2200 pels vertically; the area of the screen used for image
display, represented by the crosshatched rectangle, is only
720 pels horizontally by 360 pels vertically. If a 1: 1 mapping
of image pels to screen pels is used, only a small portion of
an image can be shown. This is useful for examining details
of an image but does not provide a convenient way to
identify a document or read a memo. For these purposes,
the image must be reduced in resolution so that most or all
of it can be viewed simultaneously. A 1 2 5 reduction in both
dimensions, accomplished by using a 2: 1 reduction followed
by a 6:5 reduction, is required to reduce the image width to
720 pels. Having the entire width on the screen simplifies the
user interface because it is only necessary to scroll in one 17

K. L. ANDERSON ET AL. IBM J . RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

1728

2200 -0- 2:l H 6 5 H
2:l v 6 5 V 1

Table 2 Image View Facility kernels.

Image decompressionlcompression
Decoder
Encoder

Scale changes
2: I Reduction
6:5 Reduction
5:6 Enlargement
General enlargement/reduction
1:3 Enlargement

Rotations
180-Degree
90-Degree (clockwise and counterclockwise)

dimension. Additional reductions in the vertical dimension
may be performed to display varying fractions of the total
image height. The 4:3 and 3:2 options display the image with
approximately the correct aspect ratio (since on the 3279 the
screen pels are higher than they are wide), while the 2: 1 and
3: 1 options are used to display most or all of the page. The
vertical reductions used in the display process are performed
by ORing adjacent scan lines together [2]. Presentation of
the scaled image on the display is handled by the Graphical
Data Display Manager (GDDM) [7]; this process is outside
the scope of the present paper.

Table 2 lists the IVF kernels which have been developed
at Yorktown. The decoder is used to decompress Scanmaster
images for manipulation and display on other devices. The
corresponding encoder takes an image in raster or “run end”
form and compresses it so that it can be sent to a 18

K. L. ANDERSON ET AL

Scanmaster for printing. The 2: 1 reduction is used to reduce
images for all of the displays. The 6:5 reduction is used to
convert from the 3800 Model 3 printer document resolution
of 240 pel/in. to the Scanmaster resolution of 200 pel/in.
and is also used to reduce images so that the full width can
be displayed on the 3278,3279, and PC/G terminals. The
5:6 enlargement does the reverse conversion. For preparing
Scanmaster images to be printed on the 4250, a 1 :3
enlargement is required. The general enlargement and
reduction functions are used in cut-and-paste applications.
A 180-degree rotation function and clockwise and
counterclockwise 90-degree rotation functions are included
so that the orientation of an image can be changed.

of two internal formats. Most work with images stored in
raster format, in which each image pel is represented by a
bit. White pels are represented by 0 bits, and black pels by
I bits. The image bits are packed eight to a byte and stored
in rows reading from left to right and from the top of the
image to the bottom. Image lines always begin and end on
byte boundaries. The second format is a run-end
representation created by the decoder for the Scanmaster
compression algorithm. In this form the horizontal position
of each white-to-black and black-to-white transition in a line
of the image is recorded in a vector of transition points; each
image line is represented by one such vector. For typical
images this representation is more compact than the raster
form, but for very complex images it can consume much
more space. Functions which convert data between these two
formats are included in IVF.

Some assumptions concerning the types of images which
are to be manipulated using IVF have been made in the
process of designing the algorithms. A major assumption is
that most images come from scanned documents that are
binary rather than gray-scale in nature; hence, they contain
text, handwriting, and line art, but not digital halftones. In
addition, it is assumed that images will consist of black
“information” on a white background. Thus, whenever it is
necessary to choose whether to preserve a white area or a
black one, it is assumed that the black area is more
important. The image-reduction algorithms described
produce poor results when applied to images that do not
meet these criteria, and the Scanmaster compression
algorithm may fail to compress or may even expand images
containing large areas of halftoning.

The various image-manipulation algorithms are described
below. Their execution times on various test images on a
308 1KX are summarized at the end of the paper.

Each of these algorithms operates on images stored in one

Image decompression and compression
Data compression is essential to make digital facsimile
practical. A typical Scanmaster I image has 1728 pels per
line and 2200 lines in the high-resolution mode. Each scan
line can be stored in raster form as a 2 16-byte record with

IBM I. RES. DEVELOP. VOL. 3 I1 NO. I JANUARY 1987

b

1

1

1

eight pels packed per byte for a total of approximately half a
million bytes per high-resolution image. A low-resolution
image, consisting of 1 100 lines of 1728 pels each, has about
a quarter of a million bytes. Low-resolution images are
typically compressed by factors of 6 to 30 with the
Scanmaster algorithm; for high-resolution images, the
compression ratio ranges from 7 to over 40 on typical
documents [8]. Thus, it is usually faster to transmit a
compressed image and decode it than to send the
uncompressed image. This is often true even when the
communication is to a hard disk for storage on a Series/l,
PC, or System/370 system.

Each square represents one pel and is either black or white.
Note that black and white pels tend to come in groups, or
''runs." One-dimensional run-length coding takes advantage
of this strong horizontal correlation by coding the number of
pels between color (black/white) changes rather than storing
the value of each pel. Figure 3 shows some examples of run
lengths.

Two-dimensional coding improves upon one-dimensional
coding by taking advantage of the strong correlation in most
images which comes from the vertical continuity of objects,
strokes, or lines. Vertical-reference coding represents a run as
the distance between the end of the run being encoded and
the corresponding color change on the history line
(preceding scanline). Figure 4 shows examples of vertical
references.

There exists a CCITT (International Telegraph and
Telephone Consultative Committee) standard for both one-
dimensional and two-dimensional facsimile data
compression [9] . The two-dimensional standard, Modified
READ, was further changed to create the Modified Modified
READ (MMR) algorithm used by Scanmaster. Modified
READ was designed to operate in an environment in which
bit errors might be introduced in the transmission process. It
therefore provides various error-checking and correction
mechanisms. In a two-dimensionally coded image, an error
in a single bit can propagate through many lines by causing
a run end to be incorrectly identified and then used as a
reference point for decoding run ends in subsequent lines. It
is thus advantageous to limit the potential damage by
periodically encoding an image line one-dimensionally, Le.,
without reference to information on the previous line. The
CCITT standard recommends that at least every second line
for low-resolution images and at least every fourth line for
high-resolution images be encoded one-dimensionally. In
addition, each encoded image line is terminated by an
end-of-line code consisting of at least eleven 0 bits followed
by a I bit and a tag bit indicating whether the next line is
encoded one- or two-dimensionally. The code words used in
Modified READ are constructed so that it is impossible to
have as many as eleven consecutive Os except at the end of a
line. Thus it is always possible to recognize end-of-line codes

A small portion of a facsimile image is shown in Figure 2.
. ..

Raster image data.

Scan line

I

History line
Scan line

VRI vo

in the code stream and break in to start decoding the first
available one-dimensionally coded line following a serious
error. In the Scanmaster environment, the integrity of the
data is guaranteed, and so these procedures are not
necessary. The Modified Modified READ algorithm uses the
same vertical reference and run-length techniques as
Modified READ, but requires that only the first line be
coded one-dimensionally and omits most end-of-line codes,
thus improving compression. The form of the MMR data 19

rNDERSON ET AL.
1

IBM J. RES. DEVELOP. VOL. 31 NO. I J IANUARY 1987 K. L. P

stream describing an image is

ID EOL 1 D data 2D EOL 2D data 2D data . . .
IDEOL 1DEOL IDEOL IDEOL IDEOL IDEOL

The first end-of-line code, the ID EOL, indicates that the
first line is encoded one-dimensionally; this allows the
number of pels per image line to be determined by the
decoder. The next end-of-line code, the 2D EOL, marks the
end of the one-dimensionally coded data describing the first
line and indicates that the succeeding lines are encoded
two-dimensionally. The remaining lines of the image are
then encoded one by one with no intervening end-of-line
codes. The series of six 1 D EOL codes constitutes a return-
to-control sequence, or end of page, as in the CCITT
standard. Fill bits (added to the end-of-line codes to obtain a
minimum transmission time per line) are not allowed. These
changes typically improve the compression performance by
15 to 35 percent over that obtained using the CCITT
standard for both high- and low-resolution images [SI.

Scanmaster I implements the MMR algorithm in
hardware; its facsimile images are available only in
compressed form. A host decompressor is needed to enable
the Image View Facility to display the facsimile images [2].
For editing images in compressed form, both an encoder and
a decoder are needed. For IVF it is essential that
encodinddecoding be performed quickly. Although
conventional wisdom predicted that more than ten million
instructions would be needed to decode the image of a
typical business letter, the final software implementation
required about one million instructions to decode such a
letter (20 kilobytes in compressed form). A page of dense
text (70 kilobytes) takes about three times as long.

Image scaling
Image scaling is required in IVF to increase or reduce the
number of pels per row (or column) in an image in order to
match the image to a printer or display device. Various
systems have been proposed to enlarge or reduce images.
Reduction methods range from simply discarding preselected
rows and columns [10, 1 I] through combining clusters of
pels with [121 or without [131 reference to the values of
neighboring pels, to the “fast projection method” proposed
by Morita et al. [141 which takes a weighted average of
neighboring pels to assign values to pels in a reduced image,
and the font-scaling method of Kikutani [151, which makes
use of geometric reference points and lines in order to scale
characters. A similar variety of enlargement systems is
available, from replication of original image rows and
columns [10, 131, to methods which assign values to inserted
pels on the basis of logical combinations of neighboring pels
[161 or detection of preselected patterns in the original data
[171, to the more complex methods of Morita et al. [141 and
Kikutani [151. In addition to these procedures, which
operate on raster data, there exist systems in which image

20 information is expressed in geometric terms (e.& the

METAFONT’” system [IS]) in which scaling can
conveniently be done. However, such systems generally are
not used to represent arbitrary image data, which IVF has
been designed to handle.

The simpler scaling methods of line-dropping or pel
replication can be readily implemented in software, but the
resulting image quality tends to be poor; enlarged images
show staircasing on edges, while useful information may be
lost during the reduction process if thin lines lie on rows or
columns which are discarded. The more complex methods
give better quality but tend to process images a pel at a time
(most are designed for hardware implementation), resulting
in unacceptable response times when the methods are
implemented in software. An exception to this is Suga’s
method [161, which is similar in approach to the 5:6
enlargement method described later. However, Suga’s
method is designed for enlarging character fonts and makes
certain assumptions about the bitmaps being enlarged; the
consideration of a larger neighborhood of pels than Suga
uses significantly improves image quality by maintaining the
connectivity of thin diagonal lines.

2:1 Reduction
The 2: 1 reduction algorithm is used to reduce images to fit
on the various displays. Since image display is a highly
interactive process which usually does not result in a
“permanent” image (i.e., hard copy), the speed vs. image
quality trade-off favors speed more for this algorithm than it
does for the other scaling algorithms to be presented.
Accordingly, a very simple algorithm is used: The image to
be reduced is divided into clusters of four pels, and each
cluster is reduced to a single pel whose value is the logical
OR of the original four pels. This method results in better
image quality than simply discarding rows and columns, and
executes more quickly than would a more “intelligent”
procedure.

The image is processed eight bytes (two vertically adjacent
words) at a time, with each eight bytes producing two bytes
of output. Processing is omitted if both input words contain
all 0 bits; by setting all of the bytes of an output line to zero
before processing the input lines which create it, the need to
store each zero result individually is eliminated. (On the
System/370 it is generally faster to clear a large area such as
the storage required for an image line using a single move
character instruction than to store each zero result
separately.) The test for input words which are zero allows
70 to 90 percent of typical images to be skipped over very
quickly.

If the input words contain nonzero pels, they are reduced
to a halfword by the procedure shown in Figure 5. The
clusters of four pels to be ORed together are indicated by the
letters representing the pels; e.g., the four pels designated
“A” will be ORed together to create a single pel “A” in the
output halfword. The input words are ORed together, and

K. L. ANDERSON ET AL IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

I

AABBCCDD I EEFFGGHH I JJKKLLMM I NNPPRRSS OAABBCCD I DEEFFGGH I HJJKKLLM I MNNPPRRS
I I I I I I I I

I I
shift

Halfword
output

I

XAXBXCXDI XEXFXGXH I XJXKXLXM I XNXPXRXS
I I I I

Mask out alternate bits
I i I

OAOBOCOD I OEOFOGOH I OJOKOLOM I ONOPOROS _.__) 0 0 00 00 0 0 I AOBOCODO I EOFGOHO I JOKOLOMO
I I I I I Copyand I I I I I shift

OR 1

OAOBOCOD I AEBFCGDH I WFKGLHM I JNKPLRMS
I I I I I - -

I ABCDEFGH i JKLMNPRS I

the result is copied, shifted right one position, and ORed in.
This produces a word in which the alternate bits represent
the OR of the four-pel clusters. The intervening bits are not
needed, so they are masked out. This result is then copied
and shifted right seven positions, and the unshifted and
shifted words are ORed together. This collects the bits
required for the output into two bytes. The bits of each byte
are placed in the correct order by using them to index a
lookup table which produces for each eight-bit input an
eight-bit output whose bits are the same as the index value
but in a different order. The two bytes resulting from the
table lookups are stored as a halfword in the output image.

0 6.3 Reduction
In addition to its usefulness in the display process of IVF,
this reduction and the matching enlargement convert
between document resolutions of 200 pellin. and 240 pel/in.

One feature of these algorithms is that if a 200-pel-resolution
document is enlarged using the 5:6 enlargement and then
reduced back to the original resolution by the 6:5 reduction,
the resulting image is identical to the original image.

The 6:5 reduction algorithm divides an image into six-by-
six-pel blocks and reduces each block to a five-by-five-pel
block. For convenience in processing, the original blocks are
handled in units of six bytes by six rows; the corresponding
output units are five bytes by five rows. If a unit contains all
0 bits, no processing is necessary, since the output area is
cleared before data are moved into it. This check typically
reduces the amount of data to be processed by more than
half.

Figure 6 illustrates the reduction of a six-by-six-pel block.
Each row is used to index a lookup table which shortens the
row by one pel and simultaneously transposes it, as
described below. When all of the results are summed, a five-

1
IBM J. RES, DEVELOP. VOL. 31 NO. I JANUARY 1987 K. L. ANDERSON ET AL.

Original block Transposed 6 x 5 block

22

I-""""-

I - 1 1 1 0 0 0 &! Table5 82000000
r"""""
I 1 1 1 0 0 1 Table4 t".,
r"""""

41000040
I 1 1 0 0 1 1 -1 Table 3 20800820

Reduced block

-""""I - ""_ - - - 1

..""""I

I O 0 0 1 1 '
I l l 1 0 1 I

I O 1 1 0 1 ; """"_

by-six-pel block which approximates the transpose of the
original block is produced. By repeating the process, the
block is further reduced to a five-by-five-pel block transposed
back to its original orientation. The objective of the row-
shortening procedure is to preserve runs. If the third pel in
the row can be removed without destroying a run, this is
done; otherwise an attempt is made to find another run to
shorten (looking for the longest run, or the run nearer the
center if two runs have the same length). If the row consists
of alternating white and black pels, the white pel nearest the
center is removed. This process approximates simply
discarding rows (or columns) except in places where a line
could be destroyed by doing so. It cannot treat all runs
equally; the true length of runs spanning more than one
block is not considered. However, by limiting the
neighborhood of pels examined to a small area, the
distortion that could arise from making changes relatively far
away from the line being discarded is minimized, and the
computation is simplified.

A substantial amount of the potential computational effort
involved in this algorithm is eliminated by constructing the
lookup tables so that the row shortening and transposition
are accomplished simultaneously using a single table lookup.
A "straightforward" implementation of the algorithm might
go through the following operations for each six-pel unit to
be processed:

1. Reduce the six pels to five via a table lookup.
2. Use the resulting value to access a second table which

converts five bits to four bytes containing the "exploded"
original bits.

block the original six pels comprise (i.e., do not shift for
the first row, shift by one bit for the second row, shift by
two bits for the third row, etc.).

3. Shift the resulting data according to which row of the

For example, if the bit pattern 0 1 1 10 1 occurred as the fourth
row of a six-by-six-pel block, it would be changed to 01 IO 1

K. L. ANDERSON ET AL. IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

by the first table lookup (the third pel is discarded),
“exploded” to 000000 IO 0000 IO00 00000000 10000000
(X’02080080’) by the second table lookup (note that the
original bit values are separated by five zero bits in the
“exploded” value; two extra bits are tacked onto the end to
get a computationally convenient total of 32 bits), and then
shifted right by three bits to obtain the final value of
00000000010000010000000000010000(x’00410010’).
However, there is no need to do all of this work every time a
six-pel unit is to be processed. The two lookup tables can be
constructed, and a third table which converts a six-pel unit
directly to the “exploded” reduced value can be created by
applying the double table lookup to every possible six-bit
input and recording the results. Additional tables can then
be formed by shifting the entries in the third table by varying
numbers of bits. The third table and the additional tables are
used in the code which implements the 6:5 reduction;
selection of the table indexed for a particular reduction/
transposition operation is determined by the row of the
original block that is being processed.

12.5 Reduction
The 125 reduction required to format a Scanmaster image
for display on a 3278,3219, or PC/G is accomplished by
performing a 2: 1 reduction followed by a 6:5 reduction,
using the algorithms described above. The 2: 1 reduction is
applied first because it is very fast; it reduces the data
volume by 75 percent, allowing the slower 6:5 reduction to
be applied to a much smaller image. Some experiments were
done applying the 6:5 reduction before the 2: 1, since the 6:5
reduction takes greater care to preserve the image quality. It
was concluded that while the image quality is slightly
diminished if the 2: 1 reduction is applied first, the
improvement in image-display response time obtained by
using this ordering outweighs the loss of image quality.

5:6 Enlargement
An image can be enlarged by inserting rows and columns
and then filling them in. In the 5:6 enlargement used in the
Image View Facility, the image is expanded horizontally (by
adding columns) and then vertically (by adding rows). To set
a bit x in an inserted line, its six nearest neighbors are
examined:

a b c

d e f
X

If b and e are equal, x is set to their value. Otherwise, if
either b or e is 1 (black) and both pels of one of the
diagonals are black, x receives the value 1; otherwise it is set
to 0. That is,

x = (b & e) I W 1 el & [(a & f 1 I (c 8~ 4 1 1 .
Note that with the System/370’s 32-bit registers, it is possible

IBM J. RES. DEVELOP, VOL. 31 NO. I JANUARY 1987

to perform this calculation for many output bits in one row
simultaneously. Additional speed is obtained for typical
images by observing that if either a, b, and c or d, e, and f
are all 0 (white), then x must be white; zeroing of the
inserted row allows storage of this result to be omitted. In
practice, only one adjacent row is checked for all 0 pels; if
one row is nonzero, there is a good chance that the other is
also, so the overhead required to perform the second test is
not justified.

with the template rotated by 90 degrees. Part of the logic is
incorporated into the procedure for inserting columns.
Column insertion is done by dividing each image line into
units of ten bits and then running each unit through a
lookup table which converts a ten-bit input mnopqrstuv into
a twelve-bit output mnYopqrsZtuv. By simple insertion of bit
columns, the inserted bits Y and Z would receive the value
0. However, by setting

Y = n & o ,

To fill in bits in an inserted column, the same rule is used

Z = s & t ,

the later calculation of the value of each inserted pel x is
simplified to

Again, this calculation can be performed for several pels at
the same time, masking out the result of the first part of the
calculation for all of the original image bits before the final
OR with the image row containing the x values.

General scaling
When dealing with specific scaling factors, columns can
often be inserted in or removed from an image in some
regular pattern which can be programmed efficiently. When
scaling by an arbitrary factor, this is not the case. For the
general scaling algorithm, this problem is solved by rotating
the image 90 degrees (using the 90-degree rotation algorithm
described later), enlarging or reducing in the vertical
dimension by the desired horizontal scaling factor, and then
rotating the image back to its original orientation. The
vertical scaling may be done either before or after the
horizontal scaling; the size of the images to be rotated is
minimized by doing the vertical scaling first if a reduction is
required or last if an enlargement is specified. The scaling
problem has thus been reduced to a question of how to add
or remove image rows to scale in the vertical dimension. A
secondary advantage of this simplification is that different
scaling factors can be readily applied in the horizontal and
vertical dimensions.

Our vertical-enlargement and vertical-reduction
algorithms are restricted so that the size of an image may not
be changed by more than a factor of two. This ensures that
for image enlargement each added line will have a line of

K. L. ANDERSON ET AL.

real data above and below it, and that for reduction no more
than two input image rows are combined to create each
output row. If greater enlargement or reduction is required,
the appropriate algorithm may be applied more than once.
This seems awkward when compared with more
conventional methods (pel replication for enlargement, line
dropping or ORing for reduction) which require only a
single pass over the data for any scale factor. However, the
extra work allows us to achieve better image quality than is
obtained with the conventional methods. In a system where
the general scaling functions are used extensively with large
scaling factors, it would be worthwhile to add functions
which apply similar logic to perform larger scale changes in
one pass; however, since IVF typically does not make
extensive use of these functions, we opted to keep the code
relatively simple and compact by imposing the limitation of
scaling by only a factor of two per iteration and using a
simple driver to call the functions repeatedly if necessary.

Vertical enlargement
The vertical-enlargement function consists of two parts: the
insertion of extra lines at appropriate intervals and the
setting of the bits in the new lines. The insertion of extra
lines is controlled by a counter which is incremented by a
certain amount after each input line is examined. Whenever
the value of the counter becomes greater than a fixed
threshold, a line is inserted and the counter is decremented
by another value. The threshold and the value used to
decrement the counter are fixed; the increment value is
calculated from the scale factor and the decrement value.
This procedure allows the spacing of the inserted lines to
vary so that the required scaling factor is closely
approximated.

The bits in the inserted lines are set using an algorithm
similar to that used in the 5:6 enlargement, except that an
additional four pels participate in the calculation. The use of
additional pels improves the appearance of lines with
shallow slopes. For enlargement factors of 1.5 or less, the
calculation is

a b c d e
X

f g h i ;

What this means is that if either of the pels above and below
x is black, and if any diagonal or vertical line through x
contains both black pels, then x is set to black; otherwise x is
set to white. Note that since the enlargement is restricted to
a factor of two or less, an inserted line always falls between
two lines of original image data (with the possible exception
of one line at the top or bottom of the image). As in the 5:6
enlargement, the calculation is omitted if one of the adjacent

lines contains all 0 (white) pels, and otherwise multiple
output bits are calculated in parallel.

A variation of the algorithm which determines the values
of the pels in the inserted line is necessary if the enlargement
algorithm is to be applied to double or nearly double the
vertical resolution. Note that if a row of black pels is
bounded above and below by white pels, the black line
cannot get thicker, since an inserted bit is not made black
unless both pels along a diagonal or vertical line through the
inserted bit are black. This problem can be overcome by
ORing one of the adjacent image lines with each inserted
line. If the line below each inserted line is ORed in, the
calculation of x becomes

~ = ~ I (C I ~) ~ [(a ~ ~) l (~ ~ i) I (C ~ ~) I (d ~ g) l (~ ~ f) l ,

or, equivalently,

x = ~ I ~ c ~ [(a ~ ~) l (~ ~ i) I (d ~ g) I (e ~ f) l l

This change reduces the ability of the algorithm to smooth
some slanted lines, but on balance it gives a more acceptable
image.

Vertical reduction
Vertical reduction of an image is accomplished by throwing
away rows of image data and preserving some of the
information they contain by adding it to adjacent rows. The
vertical reduction operates by throwing away rows of image
data after ensuring that this will not throw away any vertical
black runs, i.e., black pels which have white pels both
immediately above and immediately below them. This
prevents such problems as the conversion of an “e” into a
c In the case where the horizontal bar of the “e” is one pel

thick and the row on which it lies happens to be discarded. If
the rows before and after the row to be discarded both
contain white pels at any position where the row to be
discarded contains a black pel, the corresponding pel is made
black in the preceding row. The selection of lines to be
discarded is controlled by a process similar to that used in
the general vertical enlargement to determine when to insert
lines.

I‘ 7, ’

The vertical-enlargement and vertical-reduction
algorithms are coordinated so that the reduction algorithm
exactly reverses the enlargement.

1:3 Enlargement
The 1:3 enlargement algorithm converts a Scanmaster image
of 200 pel/in. to an image of 600 pel/in. suitable for printing
on the IBM 4250 [19, 201. It is useful to have a special-
purpose enlargement algorithm to avoid the rotation of very
large images which would be required in applying the
general enlargement to an entire facsimile image page. This
algorithm works on a few rows of the image at a time, so
that not only is the rotation avoided, but it is not even
necessary to keep the entire input or enlarged (output) image

K. L. ANDERSON E ‘T AL. IBM J . RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

in storage at one time. The enlargement algorithm is
designed to smooth some of the staircasing which would be
produced by simply converting each pel to a three by three
block of pels of the same color, and to partially compensate
for the fact that the spot size of the 4250 is much larger than
its addressability.

A run-end representation is used for the image to be
enlarged. In this form, it is reasonably straightforward to
interpolate lines in the vertical dimension. The process
works on four rows of the image at a time, interpolating
between the middle two. For each pair of run ends of the
same color, there are two possibilities, as illustrated in Figure
7. In this figure the doubly-hatched areas represent black pels
on the middle two original image lines; the singly-hatched
areas are interpolated black pels. The run ends on the two
input lines are designated Bk and C,. If the run following the
earlier run end extends beyond the later run end [e.g.,
C, < Bi < C,,,, as shown in Figure 7(a)], then the two runs
define an edge of some feature in the image. In this case, an
approximate interpolation is performed to determine the run
ends for the new lines being created. If the run following the
earlier run end does not extend beyond the later run end
[e.g., C, < C,,, 5 B,, as shown in Figure 7(b)], then one line
contains a run “inside” the feature defined by the other run.
In this case, the edge of the intruding feature is rounded. The
interpolations prescribed may be modified by some
additional rules which improve the quality of the resulting
image. For example, white streaks less than three pels thick
will be engulfed by the surrounding black pels, so they
should not be created; thus, one interpolated line may be
forced to have a white run extending to the end of a white
run on the adjacent “original” line rather than ending at an
interpolated point. Other rules attempt to preserve square
comers, require black streaks in the enlarged image to be at
least two pels thick, and require “four-corners” situations to
be preserved.

The horizontal-enlargement procedure is designed to
duplicate the effect that would be obtained by rotating the
original image by 90 degrees, applying the vertical-
enlargement algorithm, and then rotating the resulting image
back to the original orientation. The horizontally expanded
image is approximated by simply tripling each run end in
the original image line, and then selectively clipping or
adding single pels by modifying the run ends. The algorithm
which performs this “smoothing” is based on the observation
that vertical edges of the image may be “followed” over
many lines. When an edge shifts by more than one pel, a
square corner exists and no smoothing is required. If an edge
shifts by a single pel, then smoothing is performed as
necessary. For example, if an edge shifts left one pel and the
previous shift in the edge was also to the left, then a linear
interpolation is performed by adding one pel to the
approximated run end on the first third of the lines
containing the edge, leaving the middle third of the lines at

E‘

f

.

t

1:3 Enlargement algorithm: (a) Edge of feature; (b) intrusive feature.

the approximated value, and clipping one pel from the run
end on the last third of the lines containing the edge. This
method requires that a number of recently expanded input
lines be kept in storage so that they can be modified as
required. For this reason, the horizontal enlargement is done
before the vertical enlargement; if a vertical edge is an inch
long, it is then necessary to store only 200 lines instead of
600. The amount of storage used by the enlargement
procedure is controlled by the calling function; if the storage
is exhausted before the extent of some of the vertical edges
has been determined, the lines are sent out through the
vertical-enlargement procedure without smoothing. This
may result in some staircasing. However, for typical images a
storage area of 50 kilobytes is sufficient to store enough lines
to prevent this problem from arising.

representation. It can be converted to raster form or encoded
(compressed) directly using the MMR encoder, which has
the option of taking its input in run-end form. The fact that

The output image is thus constructed in run-end

IBM J. RES. DEVELOP. VOL. 3 1 NO. I JANUARY 1987 K. L. ANDERSON ET AL.

‘7V 13 NOSBBaNV ‘1 ‘X

6 t Rows

- i
l 1 I 2 l 3
1 5 1 6 1 7

I 9 1 1 0 1 1 1

21 22 23 24

12 13

11 f".)14

10 f") 15

2- 23

1 f") 24

Original image Rotated image

e 90-Degree rotations
The 90-degree rotations are similar to the 180-degree
rotation in that the image is divided up into small units
which are moved around and which also require some
internal rearrangement. For 90-degree rotation the basic unit
is the eight-by-eight-pel (one byte by eight rows) block. As in
the 180-degree rotation, the internal rearrangement of pels in
a block may be omitted if all of the pels are white. Even in
complex text or graphics images, typically two thirds of all
blocks fall into that category, and the simpler the image the
more rapidly the rotation operation can be performed. The
counterclockwise rotation will be described the same
procedure can be used with minor alterations in the control
structure and lookup tables to perform a clockwise rotation.

rearrangement required to rotate an image in place. The
image is divided into columns of some fixed width (in our
implementation, 32 bytes). The leftmost column is copied to
temporary storage, and the remaining data are copied up to
the beginning of the image area. The cleared space is zeroed,
so that no storage operations are required for all4 eight-by-
eight-pel blocks. The image in temporary storage is then
broken into eight-by-eight-pel blocks which are rotated and
positioned in the cleared space to produce the last lines of
the rotated image. The second column is then copied to

0 temporary storage, the remaining original image data are
moved up, and space is cleared for the next set of rows of
output-image data. These rows are created by rotating the
blocks of data in temporary storage and storing the rotated
blocks in the appropriate places. The process is repeated
until all of the columns of the original image have been

Figure 10 illustrates the principle of the block

copied and rotated. In practice the image data do not appear
in storage exactly as shown, since storage is one-dimensional
rather than two-dimensional as illustrated. However, the
principle of copying part of the data, moving the remainder
up to free the space required for the output, and creating the
rotated image data a strip at a time still applies. This method
works even if the original image is not square.

The rotation of an eight-by-eight-pel block may be done
by dividing the block into 16 units of four bits, running each
unit through a lookup table (which "explodes" the bits by
inserting groups of seven 0 bits between the original bits and
then shifts the result according to which row of the block the
unit came from), and summing the results appropriately.
Figure 11 shows the calculation; note that it is simply a
series of table lookups and additions.

For clockwise rotation, the block rearrangement proceeds
by copying the rightmost column of the image data
remaining at each step rather than the leftmost. The lookup
tables used in the block-rotation process are modified, and
the low-order four bits of each row of an eight-by-eight-bit
block determine the last four bytes of the output block
rather than the first.

Implementation and performance
The algorithms described in this paper have been
implemented and packaged as CMS text decks and are
available as part of IVF. The functions have no I/O; they
operate on an image in storage and produce an output image
in the same area of storage or in a different area. The calling
function is required to set up a small number of parameters
(the interface is not exactly the same for all functions); 27

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 K. L. ANDERSON ET AL.

Temp

28

11 12 13

16 17 18

21 22 23

[21 1
1‘ 6‘ 11’ 16’ 21’

L i 15 19 20 24 25

7’ 12’ 17‘ 22’

6’ 11’ 16’ 21’

1 - . ..

typically it can specify the input- and output-image areas,
the size of the input image, and some information which
allows the input image to be clipped out of a larger image
and/or specifies that the output image is to be constructed as
a subimage of a larger image.

Table 3 shows the execution times for the various
functions described in this paper. The timings given are
virtual CPU times expressed in milliseconds on an
approximately 7.9-MIPS (million instructions per second)
processor. The timings were made on a 308 1 KX which runs
at 15.8 MIPS and has two processors, only one of which is
used at any give time for a given application. Execution
times are listed for operations performed in situ, not
including 1/0 (with the exception of the MMR decoder and
encoder, which include 1/0 time for the compressed data
stream but not the raster image). All of the test images are
2 16 bytes in width; the length vanes and is indicated in the
table.

Conclusion
This paper has described a set of fast image-processing
algorithms for performing decompression, compression,
scale changes, and rotations on binary images. Techniques
such as the use of table lookups and logical operations;
processing words, halfwords, bytes, or run ends rather than
bits; and checking for white areas in the image make it
practical to perform such operations in software on currently
available processors, and will make them even more
attractive as processors become more powerful. In the area
of image scaling, our strategy has been to have the general
algorithms available, but to write separate functions to
perform operations which are frequently required. Such
special-purpose functions generally are simpler and execute
more quickly than the general functions.

Practical image-manipulation functions contribute to the
possibility of widespread use of noncoded information in the
office environment. In addition to their specific uses in the

K . L. ANDERSON ET AL. IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

Original

I l l 1

1 0 0 0

0 0 0 1 1 0 0 0

1

1

800o0o80

400oooOO

20000000

10000000

08o00000

04000000
02020202

+ 01010101

-
Table 0

4 Table 1
Table2 -1

c"r

L
4 Table 3

Table4

4 Table 5

4 Table6 br
c"(Table 7

c

-

""""""" ,",",": 1 1 1 1 1

1 1 1 1
0 0 0 1 0 0 0 1
"""""""

V
~ 1 0 0 1 1 1 0 0 I
"""""""_
L"""""""

r"""""""-
;-""""""-J 1 0 0 1 1 0 0 0 I

1 I 1 1 1 0 0 0 I
1

~ 1 1 1 1 1 1 1 1 ,
I 0 0 0 0 0 0 1 1 ' r"""""""l

!"""""""A
0 0 0 0 0 0 1 1 I

C"""""""

Rotated 90 degrees

80808080

oooO0040
00000020

10101010

08080808

04000000

OOoOoooO

oooOoooO

7-
9C9898F8

98

. -

Table 3 Execution times for IVF subroutines. All timings are virtual CPU times on a 7.9-MIPS processor, expressed in milliseconds. All
of the test images are 2 16 bytes in width.

Function Image
(No. of lines)

White Letter
(2128) (2 128)

Memo Dense Text
(2163)

Kanji Checkerboard
(2128) (2376) (2 128)

~~ ~

MMR decoder
MMR encoder
2: 1 Reduction
6:5 Reduction
5:6 Enlargement
1.3 Enlargement/smoothing
General vertical enlargement

Scale factor I . I
Scale factor 2.0

Scale factor 1. I
Scale factor 2.0

Scale factor 0.5
Scale factor 0.9 I
Scale factor 1. I
Scale factor 2.0

90-Degree rotations
180-Degree rotation

General vertical reduction

General scaling

36
35
21
62
59

22 I

26
69

25
34

103
191
238
488

85
21

117
I19
26

101
83

378

28
86

24
35

133
249
299
617
115
31

156
161
30

130
106
440

30
101

25
35

151
276
352
70 1
135
39

344
354

37
195
137
928

31
128

25
35

197
354
453
924
180
53

382 5857
416 6122
43 50

242 430
I85 328
879 8388

34 46
145 277

25 27
36 44

200 28 1
380 600
48 1 796
976 1855
187 320
73 117

I
IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

29

K. L. ANDERSON ET AL.

Image View Facility, the algorithms described in this paper
have general utility for other image-manipulation
applications.

Acknowledgments
The authors thank Peter Somerville for originating and
coordinating the Image View Facility project, and
John Dawkins and Gary Wooding for their cooperation in
defining interfaces and integrating our code into the system.

References and notes
1. Image View Facility Program Description and Operations

Manual, Order No. SB19-5919 (Program No. 5785-ECX), IBM
Corporation; available through IBM branch offices.

2. P. J. Somerville, “Uses of Images in Commercial and Office
Systems,” IBM Syst. J. 23, No. 3, 28 1-296 (1984).

3. IBM Scanmaster I (Machine Type 8815) Description Manual,
Order No. GA 18-2094, IBM Corporation; available through
IBM branch offices.

Information Manual, Order No. GC33-6133, IBM Corporation;
available through IBM branch offices.

5 . Print Services Facility Data Stream Reference, Order No. SH35-
0073. IBM Comration: available throueh IBM branch offices.

4. Composed Document Printing Facility (CDPF) General

6.

I.

8.

9.

10.

1 1 .

12.

13.

14.

15.

16.

17.

18.

19.

20.

Yoichi Takao, ‘An Approach to Image Editing and Filing,”
Tokyo Scientijic Center Report G318-1554, IBM Japan,
November 198 I.
Graphical Data Display Manager (GDDM) General Information
Manual, Order No. GC33-0100, IBM Corporation; available
through IBM branch offices.
Joan L. Mitchell, “Facsimile Image Coding,” AFIPS Con? Proc.

Roy Hunter and A. Harry Robinson, “International Digital
Facsimile Coding Standards,” Proc. IEEE 68, No. 7, 854-867
(1980).
Robert E. Shirley, “System and Method for Generating Enlarged
or Reduced Images,” U.S. Patent 4,394,693, 1983.

IBM Tech. Disclosure Bull. 21, No. 5 , 3019-3020 (1984).
I. Kitazawa, T. Uchida, and T. Ushiroda, “Reduction of Image,”

Ian D. Judd, “Method and Means for Scale-Changing an Array
of Boolean Coded Points,” U.S. Patent 4,280,143, 1981.
Everett Truman Eiselen, “Apparatus for Image Manipulation,”
U.S. Patent 3,976,982, 1976.
Hideki Morita, Masatoshi Maeda, and Yasuhiko Yasuda, “A
Resolution Conversion Scheme for Black-and-white Images,”
IEEE Global Telecommunications Conference Record, San
Diego, CA, 1983, pp. 1255-1260.
M. Kikutani, “Image Scaling,” IBM Tech. Disclosure Bull. 21,

Gojiro Suga, “Dot Matrix Converter,” U.S. Patent 4,090,188,
1978.
Setsuo Yonezawa, Tsuneta Kawakami, Tatsuo Shimada, and
Yoshinori Chida, “Apparatus for Forming a Character by a
Matrix Pattern of Picture Elements,” US. Patent 4,129,860,
1978.
Donald E. Knuth, TEX and METAFONT: New Directions in
Typesetting, American Mathematical Society and Digital Press,
Bedford, MA, 1979. METAFONT is a trademark of the
Addison-Wesley Publishing Co., Reading, MA.
IBM 4250 Printer Component Description and Programming
Information, Order No. GA33-1554, IBM Corporation; available
through IBM branch offices.
Gerald Goertzel and Gerhard R. Thompson, “Digital Halftoning
on the IBM 4250 Printer,” IBM J. Res. Develop. 31, No. 1, 2-15
(1987, this issue). See especially the Appendix (The IBM 4250
Printer), which summarizes the relevant techniques, materials,
and media.

49,423-426 (1980).

NO. 5,2984-2986 (1984).

30

K. L. ANDERSON ET AL.
a

21. D. E. Gold, T. H. Momn, and D. C. Van Voorhis, “Shift
Register System for Image Orientation,” IBM Tech. Disclosure
BUN. 18, NO. 8,2633-2639 (1976).

22. Peter J. Evans, “Image Rotation Apparatus,” U.S. Patent
4,168,488, 1979.

23. Jeffrey B. Lotspiech, “Method and Apparatus for Rotating the
Scan Format of Digital Images,” U.S. Patent 4,27 1,476, 198 1.

24. Yasuo Ikeda, “Code Converter Circuitry System for Selectively
Rotating a Video Display Picture,” U.S. Patent 4,225,929, 1980.

Received November 5, 1985; accepted for publication August
19, 1986

Karen L. Anderson IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598. Ms. Anderson is
a staff engineer at the IBM Thomas J. Watson Research Center.
Since joining IBM in 1980, she has worked in the Image
Technologies Department of the Research Division, originally on the
development of programming tools and later on techniques for
binary image manipulation. She received an IBM Outstanding
Innovation Award for her contributions to the Image View Facility
in 1985. Ms. Anderson graduated from Duke University, Durham,
North Carolina, with a B.S. in computer science in 1980.

Frederick C. Mintzer IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598. Dr. Mintzer
attended Princeton University and received the Ph.D. degree in
electrical engineering in 1978. Also in 1978, he joined the IBM
Thomas J. Watson Research Center, engaging in research on
distributed digital signal processing, signal processing architectures,
and data communications. In 1980, he became the manager of the
Signal Processing Applications project, and continued research in
these areas. In 1983, he joined the Image Technologies Department
as manager of the NCI Architectures project, engaging in research on
image-processing algorithms. Dr. Mintzer received an Outstanding
Innovation Award for his contributions to the Image View Facility
in 1985. His current research is centered on image display and print
algorithms.

Gerald Goertzel IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Mr. Goertzel joined
the IBM Advanced Systems Development Division in 1964. He
transferred to the Research Division in 1973. In the Advanced
Systems Development Division he managed a project to develop a
Clinical Decision Support System and also contributed to the design
of a small computer which was extensively used in channels and
large devices. At Research he led an effort to create a high-level
computer design system and worked in the fields of data
compression and image processing. He devised and helped evolve a
program-development system of particular use in developing efficient
portable code for image processing. He has also participated in the
development of a halftoning process to create plates for the printing
of continuous-tone black and white images on an offset press from
scanned and digitized data. His present activities are concerned with
the printing of color images. Prior to his joining IBM, Mr. Goertzel
worked at Republic Aviation (1941), taught aeronautical engineering
at New York University (1942-1943), and worked on the
Manhattan Project (1944) and at Oak Ridge National Laboratory
(1947-1948). He taught physics at New York University from 1948
to 1953. During this period he helped found, consulted for, and was
a director of the Nuclear Development Corporation of America. In
1953 he joined that company as a full-time employee, remaining
there until 1960. In 1960 he and a partner formed Sage Instruments,

IBM J. RES. DEVELOP. 1 {OL. 31 NO. I JANUARY 1987

Inc., a company which manufactured special medical and biological engineering physics from Lehigh University, Bethlehem,
instruments. Mr. Goertzel received the degrees of Mechanical Pennsylvania, in 1957, and his Ph.D. in physics from Rutgers
Engineer and Master of Science in physics from Stevens Institute of University, New Brunswick, New Jersey, in 1962. He is a member of
Technology, Hoboken, New Jersey, in 1940 and a Ph.D. in physics the American Association for the Advancement of Science, the
from New York University, New York, in 1947. Mr. Goertzel is a American Institute of Physics, the Institute of Electrical and
member of Sigma Xi and a Fellow of the American Physical Society, Electronics Engineers, and the Society for Information Display.
the New York Academy of Sciences, and the American Association
for the Advancement of Science.

Joan L. Mitchell IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Dr. Mitchell
graduated from Stanford University with a B.S. in physics in 1969.
She received her M.S. and Ph.D. degrees in physics from the
University of Illinois at Champaign-Urbana in 1971 and 1974,
respectively. She joined the Exploratory Printing Technologies group
at the IBM Thomas J. Watson Research Center immediately after
completing her Ph.D., and since 1976 has worked in the field of data
compression. Dr. Mitchell received IBM Outstanding Innovation
Awards for two-dimensional data compression in 1978, for
teleconferencing in 1982, and for the Image View Facility and
resistive ribbon thermal transfer printing technology in 1985. She is
coinventor on six patents.

Keith S. Pennington IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598. Dr. Pennington
is senior manager of the Image Technologies and Erosion Printing
Studies departments at the Thomas J. Watson Research Center. He
graduated with a B.Sc. in physics from Birmingham University,
England, in 1957 and a Ph.D. in physics from McMaster University,
Hamilton, Ontario, Canada, in 196 1. He started his research career
at Bell Telephone Laboratories, Murray Hill, New Jersey, where he
developed the first multicolor holograms and also did research in
holographic interferometry and optical information processing. He
joined IBM Research in 1967 and subsequently made several
contributions to the development of improved holographic materials
and techniques for three-dimensional scene analysis. Dr. Pennington
was appointed manager of the exploratory terminal technologies
group in 1972, and in this position he initiated the work in the
development of the resistive ribbon transfer printing technology and
other printing technologies. He became manager of the Image
Technologies Department in 1979 and has responsibility for several
projects related to high-performance videoconferencing systems,
document processing, and scanning systems, as well as novel high-
resolution printing processes. Dr. Pennington has written three book
chapters related to holography and optical information processing
and during 197 1 - 1972 served both as a participant and as a group
leader for the National Academy of Sciences Undersea Warfare
Committee. While at IBM, he has received two IBM Outstanding
Contribution Awards, an Outstanding Innovation Award, and an
Outstanding Technical Achievement Award. Dr. Pennington is a
member of the Institute of Electrical and Electronics Engineers and
the Optical Society of America.

William B. Pennebaker IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Pennebaker is a Research staff member at the IBM Thomas J.
Watson Research Center and currently manages a group doing
research in areas related to image processing and compression. He
joined IBMs Research Division in 1962 and has worked in areas
related to low-temperature physics, thin films, display technology,
printing technology, and image processing. Dr. Pennebaker has
received an Outstanding Contribution Award for work on strontium
titanate films, an Outstanding Invention Award for work on silicon
nitride films, and an Outstanding Innovation Award for work on
image processing and compression. He has received nine IBM
Invention Achievement Awards. Dr. Pennebaker received his B.S. in

IBM J. RES, DEVELOP. VOL. 31 NO. 1 JANUARY 1987

31

K. L. ANDERSON ET AL.

